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ABSTRACT Infrared spectroscopy has been utilized for nearly a century as

a qualitative tool for, at least, partial structure elucidation. More recently,

infrared spectroscopy has become a powerful, reliable quantitative analysis

tool in industrial chemistry applications, especially in the areas of quality

control. Unfortunately, this newer aspect of infrared spectroscopy is often

not conveyed during the undergraduate chemical education experiences.

We describe an undergraduate laboratory experiment that illustrates the

application of infrared spectroscopy combined with multivariate data

analysis in the concentration determination of a three-component solid state

mixture.

KEYWORDS analgesic, infrared spectroscopy, multivariate

BACKGROUND AND MOTIVATION

Although infrared spectroscopy can be a powerful tool for quantitative

analysis, undergraduate curricula tend to teach infrared spectroscopy as a

qualitative technique, an approach that our department has historically fol-

lowed. To correct this oversight, we developed the laboratory experiment,

described herein. In our chemistry curriculum, we have a three-course

lecture–lab sequence in the analytical chemistry division, of which every

student is required to take the first two courses, and of which a subset of

students takes the third course. In the first course, Quantitative Analysis,

we cover equilibrium chemistry and electrochemistry via volumetric and

gravimetric analysis, spectroscopy (UV=Vis), and potentiometry. In the

second course, Instrumental Analysis I, we cover briefly instrumental

design, method development, and data analysis of the instrumentation typi-

cal in chemical laboratories in industry and academia including but not lim-

ited to ultraviolet=visible (UV=Vis), Fourier transform infrared (FT-IR), flame

atomic absorption (FAAS), and fluorescence spectroscopies. In the third

course, Instrumental Analysis II, we cover instrumental design in detail

and cover method development and data analysis of instrumentation that

is less typical or found at research facilities, including but not limited to
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Raman and infrared spectroscopy and spectroscopic

imaging, SEM, TEM, AFM, STM, CE, cavity ring down

spectroscopy, LC-MS, and multidimensional NMR.

The laboratory experiment described herein is taught

in the middle course, Instrumental Analysis I, and is

designed for junior-level students. This experimental

exercise is performed by the students in small groups

as part of a round-robin system of experiments that

encompasses the second half of the semester. In this

round-robin system, each experiment lasts for two

3 hr laboratory periods, and the report is due 1 week

after the second laboratory period.

In the literature, there are many excellent examples

of the teaching of statistics and in particular of multi-

variate data analysis in chemistry at the undergraduate

and graduate levels. These examples range from philo-

sophy of teaching the data analysis aspects of analytical

chemistry,[1–3] to tutorials on data analysis,[4,5] to

descriptions of laboratory exercises involving multi-

variate data analysis.[6–11] Herein, we present a descrip-

tion of a laboratory exercise where the students utilize

infrared spectroscopy and multivariate data analysis to

preform quantitative characterization of the data.

Because infrared spectroscopies, both near and mid

are becoming so prevalent in the process analytical

world,[12–14] we have chosen the following setting for

the experiment. The students read in the laboratory

handout that they work as a process analytical chemist

for a pharmaceutical company. Their current assign-

ment is to develop a method for validating the concen-

tration of an analgesic in a powder formulation of three

components. As for reporting their work, the students

must write a standard operating procedure to be

followed by technicians.

LEARNING OBJECTIVES

We have designed this laboratory experiment to

achieve several learning objectives that reinforce the

general laboratory theme of method development.

These objectives are the effects of spectral overlap

on fitting data, the use of linear algebra in fitting multi-

variate data, the validation and statistical evaluation of

calibration models, and the usefulness of infrared

spectroscopy in quantitative analysis.[12–14]

MATERIALS AND METHODS

In this experiment, the students analyzed an

analgesic powder mixture using a single bounce

diamond and ZnSe attenuated total reflectance

(ATR) sampling accessory attached to a PerkinElmer

Spectrum One FT-IR (Waltham, MA). The spectral

parameters for all measurements were 4 cm�1 resol-

ution, weak apodization, four coadded scans for

both the background and sample, data spacing of

1 cm�1, magnitude-based phase correction, and

0.20 cm=s interferometer speed. Similar measure-

ments could be made with a diffuse reflectance

accessory if that accessory were available instead.

Creation of Calibration Standards

Initially the students created five calibration stan-

dards containing dextrose (Fisher Scientific), stearic

acid (Kanto Chemical Company), and acetaminophen

(Mallinckrodt) in the ratios listed in Table 1. To pre-

vent excessive waste, the total mass of the mixtures

did not exceed 0.1 g. The mixtures were homoge-

nized with a Wig-L-Bug (International Crystal Labora-

tories) for 30s, and stored in 1–2-mL capped glass vials

(Fisher Scientific) for later measurement.

Measurement of Calibration
Standards

The ATR was cleaned before every measurement

using water and then acetone. The background

single-beam spectra were acquired using a clean and

empty ATR and reacquired after every five sample

measurements. In order to ensure accurate sampling

of the solid mixture we took five aliquots from each

standard mixture and measured. Also each pure

component of the mixture was measured using the

same measurement parameters as the background

and mixture samples; these pure component data were

subsequently used to select analytical wave numbers.

Measurement of Validation Mixtures

The validation sample was a mixture of the three

components, whose concentration had been determ-

ined by other means by the instructor. The infrared

TABLE 1 Mixture Parameters

Component % by weight

Dextrose (filler) 60–95

Stearic acid (binder) 4–15

Acetaminophen (active ingredient) 4–25
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spectroscopic measurements of the validation

sample were made using the same procedures as

these for the calibration standards.

RESULTS AND DISCUSSION

All of the spectra were saved as ASCII-formatted text

files with the wavenumber and absorbance data in two

columns separated by a tab. These data were then

loaded into either Excel (Microsoft) or Octave[15]

(a free, open-source matrix math program).

Selection of Analytical Wavenumbers

Although whole spectra can be used in these

calculations, often with better fitting results,[16,17]

we have chosen to use only one absorption

maximum per mixture component. This choice is

motivated by the students’ lack of experience in

matrix algebra and the software used for these

computations; i.e., it is conceptually simpler for

the students to understand one wavenumber per

component.

The students were instructed to select a wave

number that corresponds to an absorption maximum

of each pure component, but because of the vari-

able, high humidity of the measurement environ-

ment, the spectral range is limited to regions that

fall outside regions that show heavy effects from

water vapor (approximately 700–1350 cm�1). This

was typically done by manual, visual inspection of

all three pure component spectra in either over-

lapped or stacked spectral arrangement. In any

graphing program, the stacked spectral arrangement

can be accomplish by adding a different constant to

the absorbance values of the three pure component

spectra. During this selection process the students

found that, with the exception of the carbonyl band

of the stearic acid, there are very few bands that do

not at least partially overlap with bands from other

components as can be seen in the spectra shown

in Fig. 1. Consequently, they were instructed to do

their best. As part of their report, the students

assigned the vibrational mode for the analytical

wavenumbers that they selected. These students,

whose data is shown herein, selected 994, 1297,

and 1225 cm�1 and assigned these bands to the

C-O stretch of dextrose, the C-H deformation mode

of the aliphatic chain of the stearic acid, and the

C-H in-plane rocking mode on the aromatic ring of

acetaminophen, respectively.

Averaging Spectral Data

The students averaged all five repetitions of their

spectra. The average spectra of the calibration set

are shown in Fig. 2. The averaged absorbance values

at three analytical wavenumbers were extracted from

the whole spectra of calibration and validation

samples and assembled into a matrix such as the

ones presented in Tables 2 and 3 populated with

student data.

FIGURE 1 ATR-FT-IR spectra of neat dextrose, stearic acid,

and acetaminophen. The vertical dashed lines indicate the

analytical wavenumbers used during data analysis.

FIGURE 2 ATR-FT-IR average spectra of the five mixtures in

the calibration set. The vertical dashed lines indicate the analyti-

cal wavenumbers used during data analysis.
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Univariate Model

When spectral features are free of interferences, a

straightforward univariate analysis of Beer’s Law can

be performed. In previous courses, students have uti-

lized the classic method of least squares to determine

a linear equation that best fits their data using Excel

built-in functions. Consequently, this portion of this

laboratory exercise is not a new experience, but is

necessary for understanding the limitation of fitting

data with overlapping spectral features or interfer-

ences, such as those seen in Fig. 1. For the acetami-

nophen absorbance presented in Table 2 for

wavenumber 1225 cm�1, the fitting parameters are

the slope, 0.00096823 cm, and the y-intercept,

0.050949. The plot of absorbance versus concen-

tration is shown in Fig. 3.

Multivariate Model

The first laboratory exercise for the course is

entitled, ‘‘Introduction to Data Processing, Analysis

and Visualization.’’ In it the students learned, among

other things, basic linear algebra, and actually did this

regression analysis without the chemical context but

with instructor-supplied data. So this is not the first

time they were required to perform the task. For com-

pleteness, we will describe this procedure herein.

For each calibration standard in a calibration set,

the absorbance values, a, are equated to the concen-

trations, c, of individual components (x, y, or z) as

shown in these three equations,

am ¼ kxmcx þ kymcy þ kzmcz

an ¼ kxncx þ kyncy þ kzncz

ao ¼ kxocx þ kyocy þ kzocz ð1Þ

where the indices m, n, and o indicate the three dif-

ferent wavenumbers, 994, 1297, and 1225 cm�1,

respectively. The coefficients, k, in these equations

are the proportion that each component linearly

adds to the overall absorbance at the particular

wavenumber (m, n, or o).

These equations can be written in matrix form as

shown in Eq. (2):

ðam an ao Þ ¼ ðcx cy cz Þ
kxm kym kzm
kxn kyn kzn
kxo kyo kzo

0
@

1
A ð2Þ

Then, these matrices can be expanded to include all

five mixtures in the calibration set as indicated by the

numerical index in the matrices in Eq. (3):

a1m a1n a1o

a2m a2n a2o

a3m a3n a3o

a4m a4n a4o

a5m a5n a5o

0
BBBB@

1
CCCCA

¼

c1x c1y c1z

c2x c2y c2z

c3x c3y c3z

c4x c4y c4z

c5x c5y cz

0
BBBB@

1
CCCCA

kxm kym kzm
kxn kyn kzn
kxo kyo kzo

0
@

1
A

ð3Þ

Equation (3) can be written in a more compact man-

ner as shown in Eq. (4),

A¼CK ð4Þ

where A is a matrix of absorbance values corre-

sponding to the analytical wave numbers (columns)

for each mixture (rows), C is the concentration

matrix of each component (columns) in each mixture

(rows), and K is the regression matrix that is the

best fitting of coefficients that linearly relates the

TABLE 2 Student Calibration Standard Average Spectral Data

A�vv¼994cm�1 A�vv¼1297cm�1 A�vv¼1225cm�1

0.15907 0.054111 0.076502

0.17772 0.051848 0.066005

0.18859 0.04005 0.068032

0.19902 0.046125 0.061019

0.22008 0.04017 0.055802

FIGURE 3 Univariate Beer’s Law graph of the absorbance at

1225cm�1. The straight dashed line is the best of fit line for the

standard calibration data. The ‘‘�’’ indicates the position of the

absorbance and the cpredicted for the validation sample.
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absorbance to the concentration for each component

(columns) in every mixture (rows).

Fitting the calibration standards using all the compo-

nents in a mixture involves solving Eq. (4) for K. If C

is a square matrix this operation can be accomplished

by left-multiplying both sides of the equation by the

inverse of C, C�1. In this experiment, however, the

matrix has dimensions of five mixtures by three com-

ponents. Therefore, the pseudo-inverse method was

used, resulting in Eq. (5).[18]

K ¼ ðCTCÞ�1
CTA ð5Þ

where CT is the transpose of C. These matrix opera-

tions are relatively straightforeward in Excel and

Octave. For the data presented in Table 2, the best fit

model is the K matrix shown in Eq. (6):

K ¼
0:0024004 0:00033107 0:00049477
0:00032572 0:0015696 0:00076244
0:00037364 0:00039567 0:0013827

ð6Þ

Prediction of Validation Sample

Concentrations

After the data has been fit, the students used both

their univariate and multivariate models or fitting

parameters to predict the concentrations of the

acetaminophen of the validation sample. For the

single univariate model, the students solved for

the concentration of acetaminophen using their

univariate fitting parameters as shown in Eq. (7),

Cacetaminophen ¼ Absorbance1225cm�1 � slope

y � intercept
ð7Þ

which results in the concentration of 13.9 wt% using

the data listed in Tables 2 and 3. For most students, it

was immediately clear that something was wrong, as

shown in Fig. 3 as a scatter plot of the absorbance at

1225 cm�1 versus concentration of acetaminophen,

where the 20-wt% absorbance appears low. One

temptation that the students had was to drop the

20 wt%. They were instructed to wait and see what

the multivariate model would produce.

Predicting the concentration of acetaminophen in

the validation sample with the multivariate model

was accomplished by using the pseudo-inverse

solution for the concentration shown in Eq. (8).

Cpredicted ¼ AvalidationK
T ðKKT Þ�1 ð8Þ

where Cpredicted is the matrix of predicted concentra-

tions of the three components, and Avalidation is the

measured absorbance values of the validation mix-

ture. This calculation yielded the following results:

77.4 wt% dextrose, 3.6 wt% stearic acid, and

16.9 wt% acetaminophen. This validation standard

was issued to the students with known concentra-

tions of 78.0 wt% dextrose, 4.5 wt% stearic acid,

and 17.6 wt% acetaminophen. So compared to the

single absorbance value fitting of the data, this

method provides a closer prediction.

Comparison of Models

The students were asked to compare the univari-

ate method with the multivariate method of model-

ing their data. For this task, they compared the

known validation concentrations with their predicted

concentrations in both models using the t test.[19] In

this test a 95% confidence interval, l, is calculated

using Eq. (9),

l ¼ �ccpredicted �
tsffiffiffiffi
N

p ð9Þ

where �ccpredicted is the average predicted concen-

tration, N is the number of measurements, t is the t

statistic for a 95% confidence interval, and s is the

standard deviation across the five measurements. If

their data is statistically the same as the known vali-

dation concentration, the known concentration

should fall within the interval. The intervals are

16.9� 0.8 wt% for the multivariate model and

13� 2 wt% for the univariate model. Although, for

this set of data, neither model provides a perfect

fit, there is a 95% chance that the true concentration

lies within the confidence interval of the multivariate

model. In contrast, for the univariate model, the

known concentration does not lie within the confi-

dence interval.

TABLE 3 Student Validation Sample Average Spectral Data

A�vv¼994cm�1 A�vv¼1297cm�1 A�vv¼1225cm�1

0.19337 0.037942 0.06445
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The students were asked to provide an explanation

for this difference in performance. An acceptable

explanation of the poorer behavior of the univariate

model is that the dextrose, stearic acid, and acetami-

nophen all contribute to the height of the apparent

‘‘acetaminophen’’ band at 1225 cm�1, and the concen-

trations of these three components are changing

across the samples at different rates and in different

directions. This complicated behavior results in appar-

ently ‘‘noisy’’ data in a Beer’s law plot as shown in

Fig. 3. In contrast, the multivariate model works much

better because it accounts for all components in the

mixture that contribute to the absorbance values.

CONCLUSIONS

This comparison illustrate the limitations of the

classic least squares model, which is that all contribu-

ting components to the region of spectral interest must

be accounted for in the model. Although not illustrated

here, this limitation is true for both the univariate and

multivariate methods. If, for example, the multivariate

model had only modeled the acetaminophen and

stearic acid analytical wave numbers, then it too would

not have produced a statistically accurate result.

In this experiment the students sharpened their

basic linear algebra skills, learned a method for and

the importance of compensating for spectral interfer-

ences (which can be considered matrix effects), and

reinforced their knowledge of statistically comparing

two methods of analysis. They also learned that infra-

red spectroscopy can be used for quantitative analy-

sis. We suggest that additions and changes could be

made to this laboratory experiment to illustrate other

aspects of method development. These might

include the determination of the optimum number

of aliquots to measure that one should illustrate the

need for generating enough samples to adequately

represent the population; and an increase in the

number of analytical wavenumbers from two whole

or nearly-whole spectra from three whole or nearly–

whole spectra, to illustrate further the benefits of

multivariate mixture analysis.
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10. Sârbu, C.; Horovitz, O. Characterization and classification of lantha-
nides by multivariate-analysis methods. J. Chem. Educ. 2005, 82(3),
473–483.

11. Ribone, M. E.; Pagani, A. P.; Olivieri, A. C.; Goicoechea, H. C. Deter-
mination of the active principle in a syrup by spectrophotometry and
principal component regression analysis. J. Chem. Educ. 2000,
77(10), 1330–1333.

12. Pojic, M. M.; Mastilovic, J. S.; Pestoric, M. V.; Dakovic, S. M. A com-
parative study of two analytical methods for fat content determi-
nation in brewer’s grits. J. Am. Soc. Brew. Chem. 2009, 67(3),
166–169.

13. Alcala, M.; Ropero, J.; Vazquez, R.; Romanach, R. J. Deconvolution of
chemical and physical information from intact tablets NIR spectra:
Two- and three-way multivariate calibration strategies for drug quan-
titation. J. Pharm. Sci. 2009, 98(8), 2747–2758.

14. Gilpin, R. K.; Gilpin, C. S. Pharmaceuticals and related drugs. Anal.
Chem. 2009, 81(12), 4679–4694.

15. Eaton, J. W.; Bateman, D.; Hauberg, S. Gnu Octave Manual; Network
Theory Ltd.: U.K., 2008.

16. Haaland, D. M.; Easterling, R. G. Improved Sensitivity of Infrared
Spectroscopy by the Application of Least Squares Methods. Appl.
Spectrosc. 1980, 34(10), 539–548.

17. Thomas, E. V.; Haaland, D. M. Comparison of multivariate calibration
methods for quantitative spectral analysis. Anal. Chem. 1990, 62(10),
1091–1099.

18. Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.;
Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.;
McKenney, A.; Sorensen, D. LAPACK User’s Guide, 3rd ed.; Society
for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1999.

19. Harris, D. C. Quantitative Chemical Analysis, 7th ed.; W. H. Freeman
and Company: New York, 2007; 53–77.

S. W. Huffman et al. 544

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
2
:
4
1
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1


