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Quantitative Infrared Spectroscopy in the
Undergraduate Laboratory Via Multivariate
Mixture Analysis of a Simulated Analgesic

Scot W. Huffman,

Arthur L. Salido, ABSTRACT Infrared spectroscopy has been utilized for nearly a century as
and David D. Evanoff, Jr. a qualitative tool for, at least, partial structure elucidation. More recently,
Department of Chemistry and infrared spectroscopy has become a powerful, reliable quantitative analysis

Physics, Western Carolina

tool in industrial chemistry applications, especially in the areas of quality
University, Cullowhee, NC

control. Unfortunately, this newer aspect of infrared spectroscopy is often
not conveyed during the undergraduate chemical education experiences.
We describe an undergraduate laboratory experiment that illustrates the
application of infrared spectroscopy combined with multivariate data
analysis in the concentration determination of a three-component solid state
mixture.

KEYWORDS analgesic, infrared spectroscopy, multivariate

BACKGROUND AND MOTIVATION

Although infrared spectroscopy can be a powerful tool for quantitative
analysis, undergraduate curricula tend to teach infrared spectroscopy as a
qualitative technique, an approach that our department has historically fol-
lowed. To correct this oversight, we developed the laboratory experiment,
described herein. In our chemistry curriculum, we have a three-course
lecture-lab sequence in the analytical chemistry division, of which every
student is required to take the first two courses, and of which a subset of
students takes the third course. In the first course, Quantitative Analysis,
we cover equilibrium chemistry and electrochemistry via volumetric and
gravimetric analysis, spectroscopy (UV/Vis), and potentiometry. In the
second course, Instrumental Analysis I, we cover briefly instrumental
design, method development, and data analysis of the instrumentation typi-

Received 1 September 2009; cal in chemical laboratories in industry and academia including but not lim-

accepted 26 October 2009. ited to ultraviolet/visible (UV/Vis), Fourier transform infrared (FT-IR), flame
Address correspondence to Scot W. atomic absorption (FAAS), and fluorescence spectroscopies. In the third
Huffman, Department of Chemistry course, Instrumental Analysis II, we cover instrumental design in detail
and Physics, 1 University Drive, ) ) )

Western Carolina University, and cover method development and data analysis of instrumentation that
Cullowhee, NC 28723. E-mail: is less typical or found at research facilities, including but not limited to
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Raman and infrared spectroscopy and spectroscopic
imaging, SEM, TEM, AFM, STM, CE, cavity ring down
spectroscopy, LC-MS, and multidimensional NMR.
The laboratory experiment described herein is taught
in the middle course, Instrumental Analysis I, and is
designed for junior-level students. This experimental
exercise is performed by the students in small groups
as part of a round-robin system of experiments that
encompasses the second half of the semester. In this
round-robin system, each experiment lasts for two
3 hr laboratory periods, and the report is due 1 week
after the second laboratory period.

In the literature, there are many excellent examples
of the teaching of statistics and in particular of multi-
variate data analysis in chemistry at the undergraduate
and graduate levels. These examples range from philo-
sophy of teaching the data analysis aspects of analytical
chemistry,"™ to tutorials on data analysis,/*” to
descriptions of laboratory exercises involving multi-
variate data analysis.[(’_m Herein, we present a descrip-
tion of a laboratory exercise where the students utilize
infrared spectroscopy and multivariate data analysis to
preform quantitative characterization of the data.
Because infrared spectroscopies, both near and mid
are becoming so prevalent in the process analytical
world,"* we have chosen the following setting for
the experiment. The students read in the laboratory
handout that they work as a process analytical chemist
for a pharmaceutical company. Their current assign-
ment is to develop a method for validating the concen-
tration of an analgesic in a powder formulation of three
components. As for reporting their work, the students
must write a standard operating procedure to be
followed by technicians.

LEARNING OBJECTIVES

We have designed this laboratory experiment to
achieve several learning objectives that reinforce the
general laboratory theme of method development.
These objectives are the effects of spectral overlap
on fitting data, the use of linear algebra in fitting multi-
variate data, the validation and statistical evaluation of
calibration models, and the usefulness of infrared
spectroscopy in quantitative analysis.[lz_m

MATERIALS AND METHODS

In this experiment, the students analyzed an
analgesic powder mixture using a single bounce

S. W. Huffman et al.

diamond and ZnSe attenuated total reflectance
(ATR) sampling accessory attached to a PerkinElmer
Spectrum One FT-IR (Waltham, MA). The spectral
parameters for all measurements were 4cm™ "' resol-
ution, weak apodization, four coadded scans for
both the background and sample, data spacing of
lcm™', magnitude-based phase correction, and
0.20cm/s interferometer speed. Similar measure-
ments could be made with a diffuse reflectance
accessory if that accessory were available instead.

Creation of Calibration Standards

Initially the students created five calibration stan-
dards containing dextrose (Fisher Scientific), stearic
acid (Kanto Chemical Company), and acetaminophen
(Mallinckrodt) in the ratios listed in Table 1. To pre-
vent excessive waste, the total mass of the mixtures
did not exceed 0.1g. The mixtures were homoge-
nized with a Wig-L-Bug (International Crystal Labora-
tories) for 30s, and stored in 1-2-mL capped glass vials
(Fisher Scientific) for later measurement.

Measurement of Calibration
Standards

The ATR was cleaned before every measurement
using water and then acetone. The background
single-beam spectra were acquired using a clean and
empty ATR and reacquired after every five sample
measurements. In order to ensure accurate sampling
of the solid mixture we took five aliquots from each
standard mixture and measured. Also each pure
component of the mixture was measured using the
same measurement parameters as the background
and mixture samples; these pure component data were
subsequently used to select analytical wave numbers.

Measurement of Validation Mixtures

The validation sample was a mixture of the three
components, whose concentration had been determ-
ined by other means by the instructor. The infrared

TABLE 1 Mixture Parameters

Component % by weight
Dextrose (filler) 60-95
Stearic acid (binder) 4-15
Acetaminophen (active ingredient) 4-25
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spectroscopic measurements of the validation
sample were made using the same procedures as
these for the calibration standards.

RESULTS AND DISCUSSION

All of the spectra were saved as ASCIT-formatted text
files with the wavenumber and absorbance data in two
columns separated by a tab. These data were then
loaded into either Excel (Microsoft) or Octave!™
(a free, open-source matrix math program).

Selection of Analytical Wavenumbers

Although whole spectra can be used in these
calculations, often with better fitting results, 1017
we have chosen to use only one absorption
maximum per mixture component. This choice is
motivated by the students’ lack of experience in
matrix algebra and the software used for these
computations; i.e., it is conceptually simpler for
the students to understand one wavenumber per
component.

The students were instructed to select a wave
number that corresponds to an absorption maximum
of each pure component, but because of the vari-
able, high humidity of the measurement environ-
ment, the spectral range is limited to regions that
fall outside regions that show heavy effects from
water vapor (approximately 700-1350cm ™). This
was typically done by manual, visual inspection of
all three pure component spectra in either over-
lapped or stacked spectral arrangement. In any
graphing program, the stacked spectral arrangement
can be accomplish by adding a different constant to
the absorbance values of the three pure component
spectra. During this selection process the students
found that, with the exception of the carbonyl band
of the stearic acid, there are very few bands that do
not at least partially overlap with bands from other
components as can be seen in the spectra shown
in Fig. 1. Consequently, they were instructed to do
their best. As part of their report, the students
assigned the vibrational mode for the analytical
wavenumbers that they selected. These students,
whose data is shown herein, selected 994, 1297,
and 1225cm™ ' and assigned these bands to the
C-O stretch of dextrose, the C-H deformation mode
of the aliphatic chain of the stearic acid, and the
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FIGURE 1 ATR-FT-IR spectra of neat dextrose, stearic acid,
and acetaminophen. The vertical dashed lines indicate the
analytical wavenumbers used during data analysis.

C-H in-plane rocking mode on the aromatic ring of
acetaminophen, respectively.

Averaging Spectral Data

The students averaged all five repetitions of their
spectra. The average spectra of the calibration set
are shown in Fig. 2. The averaged absorbance values
at three analytical wavenumbers were extracted from
the whole spectra of calibration and wvalidation
samples and assembled into a matrix such as the
ones presented in Tables 2 and 3 populated with
student data.
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FIGURE 2 ATR-FT-IR average spectra of the five mixtures in
the calibration set. The vertical dashed lines indicate the analyti-
cal wavenumbers used during data analysis.
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TABLE 2 Student Calibration Standard Average Spectral Data

Ay—994¢m-1 Ay—1297¢m-1 As—1225cm-1
0.15907 0.054111 0.076502
0.17772 0.051848 0.066005
0.18859 0.04005 0.068032
0.19902 0.046125 0.061019
0.22008 0.04017 0.055802

Univariate Model

When spectral features are free of interferences, a
straightforward univariate analysis of Beer’s Law can
be performed. In previous courses, students have uti-
lized the classic method of least squares to determine
a linear equation that best fits their data using Excel
built-in functions. Consequently, this portion of this
laboratory exercise is not a new experience, but is
necessary for understanding the limitation of fitting
data with overlapping spectral features or interfer-
ences, such as those seen in Fig. 1. For the acetami-
nophen absorbance presented in Table 2 for
wavenumber 1225cm™ ", the fitting parameters are
the slope, 0.00096823cm, and the y-intercept,
0.050949. The plot of absorbance versus concen-
tration is shown in Fig. 3.

Multivariate Model

The first laboratory exercise for the course is
entitled, “Introduction to Data Processing, Analysis

0.08 P

0.075 ,

0.065 [

Absorbance

0.055 -

0.05 L L L L
0 5 10 15 20 25 30

Concentration (wt% acetaminophen)

FIGURE 3 Univariate Beer’s Law graph of the absorbance at
1225cm ™. The straight dashed line is the best of fit line for the
standard calibration data. The “x” indicates the position of the
absorbance and the cpegicieq fOr the validation sample.
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and Visualization.” In it the students learned, among
other things, basic linear algebra, and actually did this
regression analysis without the chemical context but
with instructor-supplied data. So this is not the first
time they were required to perform the task. For com-
pleteness, we will describe this procedure herein.

For each calibration standard in a calibration set,
the absorbance values, a, are equated to the concen-
trations, ¢, of individual components (x, y, or 2) as
shown in these three equations,

Am = RymCx + leym Cy + lezm Cx
ay = /exncx + ]eyncy + Iezncz
do = /exocx + /eyocy + /ezocz (1)

where the indices m, n, and o indicate the three dif-
ferent wavenumbers, 994, 1297, and 1225cm™ !,
respectively. The coefficients, &, in these equations
are the proportion that each component linearly
adds to the overall absorbance at the particular
wavenumber (m, n, or 0).

These equations can be written in matrix form as
shown in Eq. (2):

kxm /eym ]ezm
(dm ay do) = (Cx Cy Cz) ]exn leyn Iezn (2)
/exo /eyo /ezo

Then, these matrices can be expanded to include all
five mixtures in the calibration set as indicated by the
numerical index in the matrices in Eq. (3):

dim A1p Ao Cix C1y Ciz
Aym A2n Ao Cox C2p Coz Iexm k ym lezm
Uz dzp dsp = C3x C3y C3z /exn ]eyn ]ezn
A4m Aip Abo Cix C4y Ciz ]exo /e Yo Iezo
Asm dsp dso Csx Cs5y Cz

(3)

Equation (3) can be written in a more compact man-
ner as shown in Eq. (4),

A=CK (4)

where A is a matrix of absorbance values corre-
sponding to the analytical wave numbers (columns)
for each mixture (rows), C is the concentration
matrix of each component (columns) in each mixture
(rows), and K is the regression matrix that is the
best fitting of coefficients that linearly relates the
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absorbance to the concentration for each component
(columns) in every mixture (rows).

Fitting the calibration standards using all the compo-
nents in a mixture involves solving Eq. (4) for K. If C
is a square matrix this operation can be accomplished
by left-multiplying both sides of the equation by the
inverse of C, C'. In this experiment, however, the
matrix has dimensions of five mixtures by three com-
ponents. Therefore, the pseudo-inverse method was
used, resulting in Eq. (5).[18]

K= (C'C)"'c’A (5)

where C” is the transpose of C. These matrix opera-
tions are relatively straightforeward in Excel and
Octave. For the data presented in Table 2, the best fit
model is the K matrix shown in Eq. (6):

0.0024004  0.00033107  0.00049477
K = 0.00032572  0.0015696  0.00076244  (6)
0.00037364 0.00039567  0.0013827

Prediction of Validation Sample
Concentrations

After the data has been fit, the students used both
their univariate and multivariate models or fitting
parameters to predict the concentrations of the
acetaminophen of the validation sample. For the
single univariate model, the students solved for
the concentration of acetaminophen using their
univariate fitting parameters as shown in Eq. (7),

Absorbance;;ssem-1 — slope

(7)

Cacetamz’nopben = v — intercept
which results in the concentration of 13.9 wt% using
the data listed in Tables 2 and 3. For most students, it
was immediately clear that something was wrong, as
shown in Fig. 3 as a scatter plot of the absorbance at
1225cm™ ! versus concentration of acetaminophen,
where the 20-wt% absorbance appears low. One
temptation that the students had was to drop the

TABLE 3 Student Validation Sample Average Spectral Data

Av:994cm*‘ Av:1297cm*1 Av:1225cm*‘

0.19337 0.037942 0.06445

20 wt%. They were instructed to wait and see what
the multivariate model would produce.

Predicting the concentration of acetaminophen in
the validation sample with the multivariate model
was accomplished by using the pseudo-inverse
solution for the concentration shown in Eq. (8).

Cpf‘edicted = Amlidﬂ[ionKT(KKT)_l (8)

where Cpegicreq is the matrix of predicted concentra-
tions of the three components, and A, uidarion iS the
measured absorbance values of the validation mix-
ture. This calculation yielded the following results:
77.4wt% dextrose, 3.6wt% stearic acid, and
16.9wt% acetaminophen. This validation standard
was issued to the students with known concentra-
tions of 78.0wt% dextrose, 4.5wt% stearic acid,
and 17.6 wt% acetaminophen. So compared to the
single absorbance value fitting of the data, this
method provides a closer prediction.

Comparison of Models

The students were asked to compare the univari-
ate method with the multivariate method of model-
ing their data. For this task, they compared the
known validation concentrations with their predicted
concentrations in both models using the 7 test."” In
this test a 95% confidence interval, u, is calculated
using Eqg. (9),

s

n= Epredicled + \/—N (9)

where Cpredgiciea is the average predicted concen-
tration, IV is the number of measurements, ¢ is the t
statistic for a 95% confidence interval, and s is the
standard deviation across the five measurements. If
their data is statistically the same as the known vali-
dation concentration, the known concentration
should fall within the interval. The intervals are
16.94+0.8wt% for the multivariate model and
13 £2wt% for the univariate model. Although, for
this set of data, neither model provides a perfect
fit, there is a 95% chance that the true concentration
lies within the confidence interval of the multivariate
model. In contrast, for the univariate model, the
known concentration does not lie within the confi-
dence interval.

543 Quantitative Infrared Spectroscopy in the Undergraduate Laboratory
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The students were asked to provide an explanation
for this difference in performance. An acceptable
explanation of the poorer behavior of the univariate
model is that the dextrose, stearic acid, and acetami-
nophen all contribute to the height of the apparent
“acetaminophen” band at 1225 cm™ ", and the concen-
trations of these three components are changing
across the samples at different rates and in different
directions. This complicated behavior results in appar-
ently “noisy” data in a Beer’s law plot as shown in
Fig. 3. In contrast, the multivariate model works much
better because it accounts for all components in the
mixture that contribute to the absorbance values.

CONCLUSIONS

This comparison illustrate the limitations of the
classic least squares model, which is that all contribu-
ting components to the region of spectral interest must
be accounted for in the model. Although not illustrated
here, this limitation is true for both the univariate and
multivariate methods. If, for example, the multivariate
model had only modeled the acetaminophen and
stearic acid analytical wave numbers, then it too would
not have produced a statistically accurate result.

In this experiment the students sharpened their
basic linear algebra skills, learned a method for and
the importance of compensating for spectral interfer-
ences (which can be considered matrix effects), and
reinforced their knowledge of statistically comparing
two methods of analysis. They also learned that infra-
red spectroscopy can be used for quantitative analy-
sis. We suggest that additions and changes could be
made to this laboratory experiment to illustrate other
aspects of method development. These might
include the determination of the optimum number
of aliquots to measure that one should illustrate the
need for generating enough samples to adequately
represent the population; and an increase in the
number of analytical wavenumbers from two whole
or nearly-whole spectra from three whole or nearly—
whole spectra, to illustrate further the benefits of
multivariate mixture analysis.

S. W. Huffman et al.
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